Math 4650 Topic 1a-Derivation of real number properties from field and order properties

heorem: Let
$$x,y,z \in \mathbb{R}$$
.
D If $x+y = x+z$, then $y = z$.
(2) If $x+y = x$, then $y = 0$.
(3) If $x+y = 0$, then $y = -x$.
(4) $-(-x) = x$
(5) If $x \neq 0$ and $xy = xz$, then $y = z$
(6) If $x \neq 0$ and $xy = x$, then $y = x^{-1} \in \mathbb{C}$
(7) If $x \neq 0$ and $xy = 1$, then $y = x^{-1} \in \mathbb{C}$
(8) If $x \neq 0$ then $(x^{-1})^{-1} = x$
(9) $0x = 0$
(10) If $x \neq 0$ and $y \neq 0$, then $xy \neq 0$

(i)
$$(-x) y = -(xy) = x(-y)$$

(i) $(-x)(-y) = xy$
Proof:
(i) Suppose $x+y = x+Z$.
Then,
 $y=0+y=(-x+x)+y=-x+(x+y)$
 $(A^{(x)})$
 $(A^{(x)})$
 $(A^{(x)})$
 $(A^{(x)})$
 $(A^{(x)})$
 $(A^{(x)})$
 $(A^{(x)})$
 $(A^{(x)})$
 $= -x + (x+Z) = (-x+x)+Z$
 $= 0+Z = Z$
 $(A^{(x)})$
 $(A^{(x)})$

$$O \times = (O + O) \times = O \times + O$$

Then,

$$-0x + 0x = -0x + (0x + 0x)$$
So by (AS) and (A3) we get

$$0 = (-0x + 0x) + 0x$$
By (AS) we get

$$0 = 0 + 0x$$
By (A4) we get

$$0 = 0x.$$
(b) Let x,y \in \mathbb{R} with $x \neq 0$ and $y \neq 0$.
Let's show this implies that $xy \neq 0$.
Let's show this implies $x + 1 = 1 + 1 = (x'x)(y'y) = x'(xy')y = x'(y'x)y$

$$f = 1 + 1 = (x'x)(y'y) = x'(xy') = x'(y'x)y$$

$$f = (x'y')(xy) = x'y' = 0$$

$$f = (x'y')(xy) = x'y' = 0$$
We get the contradiction $1 = 0$.
Hence we must have $xy \neq 0$.

(i) We have that

$$(-x)y + xy = (-x+x)y = 0y = 0$$

$$Thus, by part 3 we get$$

$$(-x)y = -(xy).$$
Similarly,

$$x(-y) + xy = x(-y+y) = x 0 = 0$$

$$so, x(-y) = -(xy).$$

(12) We have that

$$(-x)(-y) = -(x(-y)) = -(-(xy)) = xy$$

$$(part \oplus)$$

$$(part \oplus)$$

$$\boxed{7}$$

Theorem: Let x, y ∈ R.

Then: (1) If x > 0, then -x < 0. (2) If x < 0, then -x > 0. (3) If x > 0 and y < z, then xy < xz. (4) If x < 0 and y < z, then xy > xz. (5) If $x \neq 0$, then $x^2 > 0$. (6) 1 > 0(7) If 0 < x < y, then 0 < y' < x'.

$$\frac{Proof:}{D If x > 0}, \text{ then}$$

$$O = -x + x > -x + 0 = -x$$

$$O = -x + x > -x + 0 = -x$$

$$(AS) (OS)$$

$$Thus, O > -x.$$

$$O = -x + x < -x + 0 = -x.$$

$$O = -x + x < -x + 0 = -x.$$

$$Thus, O < -x.$$

3	Suppose X70 and y <z.< th=""></z.<>
	Then,
	z - y > y - y = 0
	个 (03)
	So,
	7 . 4 70.
	Thus, by (04) we get
	Thus, by (UI)
	$\chi(z-y) > 0$
	So, (A4)
	xz = xz + 0
	xz = xz + (-xy + xy) $= xz + (-xy + xy)$
	$ \begin{array}{l} (AS) \\ = (XZ - XY) + XY \\ (A3) \\ (A3) \end{array} $
	$(A3)$ $) \perp X $
	(A3) = x(z-y) + xy $(D1)$
	(D1)
	$\sum_{(03)} (04)$
	= X Y

Thus, XZ7XY.

(4) Suppose
$$x < 0$$
 and $y < Z$.
Since $x < 0$ we have $-x > 0$. \leftarrow (part 2)
Since $y < Z$ we have $-y + y < -y + Z \leftarrow (03)$
So, $0 < Z - y \leftarrow (A4)$ and $(A2)$

Then,

$$- \begin{bmatrix} \chi(z-y) \end{bmatrix}_{f}^{2} (-\chi)(z-y) > 0$$

$$\begin{pmatrix} previous \\ fheorem \end{pmatrix}$$
Thus, $\chi(z-y) < 0$ by Part I.
So, $\chi z - \chi y < 0$. $\leftarrow (D1 \text{ and } previous \text{ theorem})$
Thus, $\chi z - \chi y + \chi y < 0 + \chi y \leftarrow (o3)$
Thus, $\chi z + 0 < \chi y \leftarrow (A4, A5)$
So, $\chi z + 0 < \chi y$. $\leftarrow (A4)$

(5) Suppose
$$x \neq 0$$
.
If $x > 0$, then $x \cdot x > 0 \cdot 0$ by (04) .
If $x > 0$, then $x^2 > 0$. $(0.0 = 0)$
by prev.
theorem

If
$$x < 0$$
, then $-x > 0$ by part 2.
Hence if $-x < 0$, then $(-x)^2 > 0$.
But $(-x)^2 = (-x)(-x) = x^2$ by prev. thm.
Thus, if $x < 0$, then $x^2 > 0$.
(a) get that $1^2 > 0$.
(m4)
Thus, $1 > 0$
(m4)
Thus, $1 > 0$
(m5) (m4)
(m5) (part 6)
Since $y > 0$ and $yy' > 0$ we must
have that $y' > 0$ by (o4).
Similarly $x' > 0$.
Since $x < y$ we know $x(x'y') < y(x'y')$
Since $x < y$ we know $x(x'y') < y(x'y')$
Thus, $(xx'')y' < y(y'x'')$ by (m3).
So, $1y' < (yy') x''$ by (m4, m5)



